7th International NanoSIMS Workshop Leipzig, Germany 2017

To the rhizosphere & beyond: the past, the present, & future opportunities

Associate Professor Peta Clode Centre for Microscopy, Characterisation & Analysis

CMCA @ UWA

C Facilities AMMRF Flagship Ion Probe Facility Metabolomics Australia **NIF Bioimaging** Cytometry Biological and molecular mass spectrometry (BMMS) X-ray microscopy (XRM) Nuclear magnetic resonance Optical microscopy Scanning electron microscopy (SEM) Scanning probe microscopy (SPM) Transmission electron microscopy (TEM) X-ray diffraction Data management, analysis and visualisation (DMAV) Sample preparation Physical Containment Level 2

The Scale of Things – Nanometers and More

Things Natural **Things Manmade** 1 cm 10⁻² m 10 mm Head of a pin 1-2 mm U.S. Department of Energy 1.000.000 nanometers = Ant 10⁻³ m 1 millimeter (mm) ~ 5 mm Microwave **MicroElectroMechanical** (MEMS) devices Dust mite 10 -100 µm wide \leftrightarrow 200 µm 0.1 mm 10⁻⁴ m 100 µm Microworld *Ar* Fly ash Human hair ~ 10-20 µm ~ 60-120 µm wide 0.01 mm 10⁻⁵ m 10 µm Pollen grain Red blood cells Red blood cells (~7-8 µm) Zone plate x-ray "lens" 1.000 nanometers = Outer ring spacing ~35 nm 10⁻⁶ m 1 micrometer (µm) 0.1 µm 10⁻⁷ m 100 nm JItraviole Nanoworld Self-assembled, Nature-inspired structure 0.01 µm 10⁻⁸ m Many 10s of nm 1um 10 nm ~10 nm diameter Nanotube electrode ATP synthase 10⁻⁹ m 1 nanometer (nm) Carbon buckyball Soft x-ray ~1 nm diameter Carbon nanotube ~1.3 nm diameter Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip

Corral diameter 14 nm

Office of Basic Energy Scien

DNA ~2-1/2 nm diameter

Atoms of silicon spacing 0.078

nm

10⁻¹⁰ m

0.1 nm

of Things – Nanometers and More

One handful of a fertile soil can contain more organisms than people on earth (6.7 billion)

Soil Biology / Science

Food security Optimised land use Biodiversity hotspots Ecosystem rehabilitation

Soil Biology / Science

Interactions & activity between plants, soil, additives (*e.g.* biochar), and microorganisms – *WHO's DOING WHAT, WHEN & HOW...?*

NanoSIMS & Soil Biology

NanoSIMS

- Dry & stable
- Conductive
- Ultra high vacuum tolerant (10⁻¹⁰ torr)
- Very flat

Soil interface

- Soil physics:
 Intact soil structure
- Soil chemistry: No modification of N pools
- Soil biology: No modification of soil microbial or plant root cells

This poses some difficult challenges

and compromises...

??? Can we prepare & image single ¹⁵N-labelled bacteria in a soil core using NanoSIMS...?

RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2007; 21: 29-34 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rcm.2811

A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry

Anke M. Herrmann^{1,5*,†}, Peta L. Clode², Ian R. Fletcher², Naoise Nunan³, Elizabeth A. Stockdale⁴, Anthony G. O'Donnell⁵ and Daniel V. Murphy¹

Artificial experiment

- Pseudomonas fluorescens grown in mineral medium with ¹⁵N (54 atom%)
- Bacterial cells added to soil
- Soil fixed and resin embedded
- =10 mm diameter soil cores
- Au coated
- 10-30 micron fields of view
- Simultaneous isotope detection
 - ¹⁵N (As ¹²C¹⁵N)
 - ${}^{14}N (As {}^{12}C^{14}N)$
 - ¹²C
 - ²⁸Si

185 x 140 µm FOV X-ray analysis of silica 75 x 50 µm FOV (6 separate images)

10 x 10 µm FOV

THE UNIVERSITY OF

Herrmann et al (2007) Rapid Communications in Mass Spectrometry 21, 29-34

Mapping location of <u>active</u> microbial populations

Can statistically analyse & compare levels of ¹⁵ N enrichment in <u>single</u> cells		
	Area	^{15/14} N ratio of bacteria
	1	0.424 ±0.002
	2	0.486 ±0.003
	3	0.548 ±0.006
	4	0.543 ±0.018
	5	0.632 ±0.017
	Aresin	0.006 ±0.001
	Bresin	0.009 ±0.001
4	Natural	0.003

Herrmann et al (2007) Rapid Communications in Mass Spectrometry 21, 29-34

Blue = ${}^{28}Si^{-}$ Green = ${}^{12}C^{14}N^{-}$ (represents organic matter) Red = ${}^{15}/{}^{14}N$ ratio images (distribution ${}^{15}N$ enriched bacteria)

Herrmann et al (2007) Rapid Communications in Mass Spectrometry 21, 29-34

Proof of concept

✓ Can we prepare & find ¹⁵N-labelled bacteria in a soil core?

Real experiments & real samples

??? Can we analyse and track ¹⁵N competition between bacteria and plant roots in the rhizosphere in soil...?

Eg. 1: ¹⁵NH₄ uptake in wheat roots

- Plant grown in soil in a rhizotube
- ¹⁵N labeled ammonium added at time = 0 hrs
- Plant roots and soil chemically fixed after 5 min, 30 min, 90 min, 6 hr and 24 hr
- Soil resin embedded and polished

Breakthrough	Technologies
--------------	--------------

Clode et al. (2009) *Plant Physiology* 151:1751-1757.

In Situ Mapping of Nutrient Uptake in the Rhizosphere Using Nanoscale Secondary Ion Mass Spectrometry^{1[OA]}

Peta L. Clode, Matt R. Kilburn, David L. Jones, Elizabeth A. Stockdale, John B. Cliff III, Anke M. Herrmann², and Daniel V. Murphy*

Clode et al. (2009) *Plant Physiology* 151:1751-1757.

Remove soil

NanoSIMS

Proof of concept

✓ Can we prepare & find ¹⁵N-labelled bacteria in a soil core?

Real experiments & real samples

Can we analyse and track ¹⁵N competition between bacteria and plant roots in the rhizosphere in soil?

??? What about ¹³C and/or ¹⁵N translocation in mutualistic systems...?

Unpublished data removed

Looking forward...

The main questions:

- Linking activity to species identity directly In intact complex systems at single cell level!
- Beyond just isotopes What molecule is it...?
- Investigating interfaces
 Correlative / novel methods for looking at mineral-cell interfaces

Looking forward...

The main questions:

- Linking activity to species identity directly In intact complex systems at single cell level!
- Beyond just isotopes
 What molecule is it...?
- Investigating interfaces
 Correlative / novel methods for looking at mineral-cell interfaces

Is always a compromise...

- Sufficient sample quality and structure
 No point analysing at 50 nm resolution if your sample is not preserved adequately at this scale
- Preservation of molecules of interest
 What molecule(s)...?
- Tailored to each individual sample and question There is no simple or routine solution

Very exciting!

....but now, more than ever, complex systems demand interdisciplinary & correlative approaches...

Acknowledgments

RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2007; 21: 29–34 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rcm.2811

A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry

Anke M. Herrmann^{1,5*,†}, Peta L. Clode², Ian R. Fletcher², Naoise Nunan³, Elizabeth A. Stockdale⁴, Anthony G. O'Donnell⁵ and Daniel V. Murphy¹

New Phytologist

Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation

Christina Kaiser^{1,2}, Matt R. Kilburn³, Peta L. Clode³, Lucia Fuchslueger², Marianne Koranda², John B. Cliff³, Zakaria M. Solaiman¹ and Daniel V. Murphy¹

Soil Biology & Biochemistry 39 (2007) 1835-1850

Review

Nano-scale secondary ion mass spectrometry — A new analytical tool in biogeochemistry and soil ecology: A review article

Anke M. Herrmann^{a,f,*}, Karl Ritz^b, Naoise Nunan^c, Peta L. Clode^d, Jennifer Pett-Ridge^e, Matt R. Kilburn^d, Daniel V. Murphy^a, Anthony G. O'Donnell^f, Elizabeth A. Stockdale^g

New

Phytologist

Research

Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (*Triticum aestivum*)

David L. Jones¹, Peta L. Clode², Matt R. Kilburn², Elizabeth A. Stockdale³ and Daniel V. Murphy⁴

¹Environment Centre Wales, Bangor University, Gwynedd, IL57 2UW, UK; ²Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, WA 6009, Australia; ³School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; ⁴Soil Biology and Molecular Ecology Group, School of Earth and Environment, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia

Plant Physiology[•]

Soil Biology & Biochemistry

www.elsevier.com/locate/soilbio

In Situ Mapping of Nutrient Uptake in the Rhizosphere Using Nanoscale Secondary Ion Mass Spectrometry^{1(DA)}

Soil Biology &

Biochemistry

Peta L. Clode, Matt R. Kilburn, David L. Jones, Elizabeth A. Stockdale, John B. Cliff III, Anke M. Herrmann² and Daniel V. Murphy^{*}

2018 Workshop – Perth?

UWA'S PROPOSES TO HOST The 8th International NanoSIMS Workshop

17 – 19 SEPTEMBER 2018

Thankyou for the invitation and for listening!